

DocksTheFuture Conference "Defining the concept of the Port of the Future 2030"

COREALIS Project Sustainable Innovative Footprints for Future Ports

Margarita Kostovasili, Project Manager, Logistics & Maritime Unit, ICCS

November 24th, 2020, Virtual Conference

- ✓ Call identifier: H2020-MG-7.3-2017 "The Port of the Future"
- ✓ Duration: 01.05.2018 30.04.2021 (**36** months)
- ✓ EC funding requested: 5,150,540.00 €
- ✓ Coordinator: Institute of Communication and Computer Systems (ICCS)
- ✓ 17 partners from 9 European and associated countries
- ✓ 4 Research Institutes, 5 Port operators/ Port Institute/ Port Authority, 4 Industry partners, 3 SMEs, 1 ITS Association
- ✓ Living Labs demonstrations in Five European Port-Cities, including 3 out of the top-5 in Europe

Antwerp Port, Belgium

Piraeus Port, Greece

Valencia Port, Spain

Livorno Port, Italy

Haminakotka Port, Finland

COREALIS Project, DocksTheFuture Conference, November 24th, 2020

COREALIS proposes a **strategic, innovative framework**, supported by **disruptive technologies**, including Internet of Things (IoT), data analytics, next generation traffic management and emerging 5G networks, so that cargo ports can face <u>current and future challenges regarding</u>:

Optimization of port operations

Reduction of environmental footprint

Increase of efficiency & reduction of traffic within and around ports

Sustainability of the socioeconomic development of the port and its surrounding area

Port of the Future Serious Game (simulation tool for decision making)

RTPORT

(a Model-Driven Real-Time control module supporting 5G smart terminal operations)

Brokerage Platform (Cloud based marketplace for leasing and exchanging intraport assets)

PORTMOD

(an optimization modelling tool for CT operations)

(a scheme making the port the epicenter of the local industrial landscape)

Truck Appointment System (reservation system including realtime traffic data)

Just-In-Time Rail Shuttle Service

(feasibility study for key porthinterland corridors) **Cargo Flow Optimiser** (an optimization tool for ocean/rail/inland waterway cargo flows)

Predictor for Asset Management (an optimization, machine learning tool for efficient use of port assets)

Green Cookbook

(a cost benefit analysis and roadmap for reducing port's environmental footprint)

	Hinterland connectivity			Intra-Terminal operations				Decision making/ Innovation		
	TAS	Brokerage platform	JIT Rail Shuttle Service	Cargo Flow Optimiser	Predictor / Asset Mgmt	PORTMOD	RTPORT	Energy assessment & Green cookbook	PoF Serious Game	Innovation Incubator
Valencia	X		X							X
Piraeus					X			X	X	
Livorno						X	X		x	
Antwerp		X		X						
Haminakotka	x					x			x	

Antwerp Port, Belgium

Antwerp Port, Belgium	Terminal input	Current transportation environment
	 Terminal occupancy Containers arriving / leaving time stamp Inland mode of transport expected 	•Current inland connections •Capacity of transport connections
 Data multiplexing for cargo flow optimiz 	zation	Orand
 Multimodal delivery modes alternatives 	Optimization model	
total distance, time, cost and CO ₂ emis	•Proposition of new transport	
 Container waiting times minimized, red 	shared services on-demand	

Around-Times

- ✓ High level of automation for the general cargo management process
- ✓ Increase of visibility of the cargo in the intra-terminal operations
- ✓ Reduction in number of moves required and total milage of yard equipment
- ✓ Safety improvement through the reduction of human presence in the port yard

Piraeus Port, Greece

Collecting and Preprocessing Data and Predicting Breakdowns Utilizing Predictions Transmitting Data Training of AI Model

- ✓ Operational efficiency and elongated yard equipment life-cycle
- ✓ Reduced use of spare-parts, lubricants and tyres
- ✓ JIT spare parts inventory
- ✓ Current level of True Positive Predictions: 85%

Port operational efficiency

	2. Operational eniciency
1. Embracement of circular economy	improvement, yard capacity
models in the port strategy and	optimization and streamlining of
operations	cargo flows without additional
	infrastructure investments
3. Reduction of the port's	
environmental footprint associated	4. Enabling the port to take informed
with intermodal connections and the	medium- and long-term strategic
surrounding urban environment for	decisions and become an innovation
three major transport modes, road, rail	hub of the local urban space
and inland waterways	

2 Operational efficiency

THANK YOU FOR YOUR ATTENTION

Margarita Kostovasili, Project Manager, Logistics & Maritime Unit, ICCS

🖂 margarita.kostovasili@iccs.gr

This project has received funding from the European Union's horizon 2020 research and innovation programme under grant agreement No. 768994